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We present a class of simple models for global bifurcations creating horseshoes. 
Some properties known for H6non mappings are easily obtained for these 
models such as, e.g., the existence of nontrivial hyperbolic sets. Kneading 
sequences techniques allow us to exhibit explicit differences with the global 
bifurcation diagram for maps of the interval. Explicit examples displaying wild 
hyperbolic sets and infinitely many sinks are also given as an illustration of the 
simplicity of these models. 
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1. INTRODUCTION 

One of the fundamental problems in bifurcation theory, especially if one is 
interested to its applications to the onset of turbulence, (17) is to understand 
the way in which horseshoes (2~ are created. Since the introduction and first 
studies by H6non (8) of a simple and explicit model for the formation of a 
horseshoe, (6) there is a controversial belief that strange attractors might 
appear in the process of formation. However, despite their very simple 
formula, 

Ha, b : ( X ,  Y) ~->(1 - a X  2 + Y, bX) (1) 

the H6non mappings are essentially difficult to analyze from the mathemat- 
ical point of view, and can even be difficult to handle numerically (see, e.g., 
Refs. 4, 5, and 18). 
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Our goal in this paper is to present a "new" class of simple models for 
the formation of a horseshoe and to describe their simplest properties. A 
great advantage of these models is that most nontrivial features known to 
occur, e.g., for H6non mappings, can be realized explicitly in this case. One 
should also mention that models of the same kind have been used before 
(e.g., Ref. 15), but only in a geometrical way--i.e., no formulas were 
attached to the construction. 

The paper is organized as follows: Section 2 is devoted to the presenta- 
tion of the models: as well as H6non mappings, they appear as particular 
cases of a slight generalization of models proposed by Bowen in Ref. 2. 

In Section 3, we take some benefit from the fact that many orbits of 
our mappings can be understood in terms of a single one-dimensional 
endomorphism, pertaining to a known one-parameter family. In particular, 
(Section 3.1), we show how to get, very simply as compared to H6non's case 
(see Ref. 21), a horseshoe for the second iterate of the mapping: the 
hyperbolic structure of the nonwandering set of this horseshoe is straight- 
forward. Note that except when Ibl is very small, (9) such results were 
explicitly proved for H6non mappings only in the orientation reversing 
case (7'1~'21) and even then, nontrivial hyperbolic sets were merely known to 
exist (using Ref. 20) and  not explicitly described. We also exhibit in Section 
3.2 explicit differences in the bifurcation diagram for one-dimensional 
maps and our mappings. 

Finally, in Section 4, we give explicit examples of wild hyperbolic sets 
[14] (Section 4.1) and of mappings with infinitely many sinks (13) (Section 
4.2): the wild hyperbolic sets are constructed using the horseshoes of 
Section 3.1 and the infinitely many sinks come from orbits described in 
Section 3.2. 

2. PRESENTATION OF THE MODELS 

Let 

f : I ~ I  
be an endomorphism of the unit interval and let 

r =  r ( [0 ,  1]) 

be a curve in the unit square S = I • I with 

P2(7 (Y)) -- f(Y) 
where Pl and P2 are the projections on the x and y axis (e.g., in Ref. 2 
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Bowen chooses ]7 as the graph of f). The mapping 

F0: S >S 

is an endomorphism of S whose dynamics is completely described by f. 
One can extend F 0 to an injective map: 

F:S-->S 
by 

a. contracting S along its left boundary {0} x I so that {0) x I is no 
longer necessarily a boundary of the contracted S but so that in any case 
this contracted strip contains {0) x I; 

b. arranging the contracted strip along the curve F so that {0) X I is 
precisely mapped onto the curve I" (see Fig. 1). 

The thickening of F means that the y-dynamics under 17 is no longer 
given by a single map of the interval (compare to the case F0 where the 
width of the strip is zero everywhere). Applying F successively corresponds 
to composition of maps "near" f. 

The Hrnon mappings (8) give concrete examples of this "thickening" 
construction. We recall (21) that they can be rewritten as 

(x, y)w->(y, Ry(1 - y) + bx) 

with (x, y) affine functions of the coordinates (X, Y) used in formula (I), 
when (1 + b)  2 q- 4a/> 0 (i.e., when Ha,b admits at least a fixed point). More 
generally, given f :  I ~  I, one gets a "generalized Hrnon mapping" by 
writing 

Y ( x ,  y) ~ (y, f (y )  + bx) 

These mappings have the advantage of being given by very simple formu- 
las. The price one pays is that, because horizontal lines are mapped to 
vertical ones, one loses almost all control of most of the nonwandering set 
and the associated invariant manifolds. 

C 

Fig. 1. (a) F = V([0, 1]); (b) S is contracted on a strip along its left side; (c) this strip is 
mapped along F. 
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The class of models we propose can be defined by requiring that, 
except for a (narrow) horizontal strip, horizontal lines in the square S be 
mapped to horizontal lines. Specifically, we consider mappings F of the 
square S to itself which have the form 

F(x ,  y)  = (gy(x), f ( y ) )  

except for y in a strip I X U. In this formula gy depends smoothly on y, 
with Idg /dx[  < 1 and g0(0) = 0; f :  1-~ 1 is assumed to be unimodal, taking 
on its maximum at c E]0, 1[ and one assumes furthermore that f ( 0 ) =  f(1) 
= 0, so that the origin 0 = (0, 0) is a fixed point of F. 

Furthermore, U = ]u m, UM[ with 0 < u m < c < u v < 1 and the relation 
between F and f in I • U is chosen so that f describes the y transformation 
of points on all the left boundary of the unit square, i.e., 

p2F( 0, Y) = f ( y )  

We shall be mostly concerned with the physically more relevant case when 
F preserves orientation. Then, in order to make many computations sim- 
pler, we shall also impose that the vertical segment {0} • [0, c] be part of 
the unstable manifold of 0, so that the conditionf(c) = 1 corresponds to the 
existence of tangent homoclinic points in the invariant manifolds of 0. 

Let us now make some remarks: 
1. The y-transformation for a point in [0, 1] • U will be given by a 

member of a continuous one-parameter family f , ,  v ~ [0, 1] with fl ~-f: if U 
is small enough, we obtain that a great part of the y-dynamics of F is 
described by a single one-dimensional map f;  

2. In the limit U = { c}, F globally preserves the set of horizontal 
lines with the line [0, 1] • {c} mapped to a single point. Then the y- 
dynamics of F is completely described by f: F is indeed a skew-product 
over f given by 

F(x,  y)  = (gy(x),  f ( y ) )  

where gy is a contraction over horizontal leaves, depending continuously (or 
as smoothly as one wants) on y, with Ogy/Ox-+O as y--->c. A fairly 
complete description of this kind of "pinched diffeomorphisms" will be 
given elsewhere; let us just remark here that in the general case, F appears 
as a perturbation of such objects (which do have strange attractors with 
Cantor-like transverse structure when f admits an invariant probabilistic 
measure absolutely continuous with respect to Lebesgue) instead of a 
perturbation of a simple one-dimensional map as in the case of generalized 
Hrnon mappings. 

Different examples of such mappings will be constructed for different 
purposes in the sequel of the paper. We have just illustrated in Fig. 2 the 
main difference between our models and generalized Hrnon mappings. 
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Fig. 2. 

(a) (b) 
F(S) for (a) our mappings, (b) H~non mappings (here b > 0). The lines are images of 

horizontal fibers [0, 1] • {y}. 

3. SOME SIMPLE CONSEQUENCES OF THE ALMOST PRESERVED 
HORIZONTAL FOLIATION 

In this section, we will be concerned with some orbits in the nonwan- 
dering set ~(F)  which have at most one point in the "bad set" [0, 1] X U. In 
the first subsection, we will exhibit a hyperbolic set in the complement of 
[0, 1] x U, for F correctly chosen. In the second subsection, we will con- 
sider some periodic orbits with only one point in [0, 1] X U, and give an 
example of the differences between the bifurcation diagrams for one- 
dimensional maps and some one-parameter families of diffeomorphisms in 
the process of formation of a horseshoe. 

To make the proofs as simple as possible, we will place unnecessarily 
strong restrictions on the mappings we consider: in Section 3.1, F will 
uniformly contract horizontal leaves in the complement of the bad set 
[0, 1] x U, and in Section 3.2, we will furthermore specify that the maps 
belong to an explicit five-parameter family. 

3.1. A Horseshoe for F 2 

Let us write the complement of the bad set 

s \ [ 0 , 1 ]  x u =  c = cL u cR 

where C L (respectively CR) is the connected part of C below (respectively, 
above) [0, 1] • U. Then, F c = F I c  is a map from C to the unit square 
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given by 

(x, y) ~ (gy(x), f(y)) 
where gy is a contraction over horizontal leaves in C. For the sake of 
simplicity, we shall suppose that 

(a) 
U = ] � 8 9 1 8 9  for some e~]0,�89 

f ( �89189 for x E[0 ,1]  

(b) 
F((0} X [0,�89 - e ] )  C {0} X[0,1] 

F({0} •  1] )C (1) •  

(c) IOxgy(x)l=~X<l/2 and If'l~>t~>l in [0 ,1] \u  

(c) will ensure some hyperbolicity properties, and fixing lOggy(x)[ to a 
constant value X in conjunction with hypothesis (b) will ensure that F(S) 
has the simple shape represented in Fig. 2a, and allow some explicit 
computations in the proof of the theorem below. 

We shall denote by f the flat-top map defined by 

f ( y ) = f ( y )  if y ~  U 

f ( y ) = f ( { - r  if y ~ U  

Then the following theorem is reminiscent of a result obtained in Ref. 21 
for some H6non mappings. Note however that 

i. the formulation is stronger here than in Ref. 21 since we obtain an 
explicit hyperbolic set; 

ii. the case considered here is orientation preserving; 
iii. the proof in the present case is quite straightforward. 

T h e o r e m .  If the topological entropy h(f)  >/log~/'2, then there exists 
a rectangle R in S such that F 2 acts on R like the genuine horseshoe map. 
Consequently (i) F 2 acts on some Cantor set in R like the full shift with two 
symbols; (ii) this Cantor set is in the nonwandering set for F and has 
hyperbolic structure; (iii) the topological entropy h(F) >1 Log~-. 

Proof. From h(f) >/log~f2, f unimodal, fflat  top and [f'[ > 1 out- 
side of U, one knows that there exists an interval J = [)7, y*] in [0, 1] with 

i(y*) =y*, y* # o 

/()7) =y*, )7<y* 
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,i 
I ~  . I I 
oll & IJ.,! 

p ~  "I 

99' y*'y* 
Fig. 3. The points f ,  f', y*', y* as defined in the main text. The mapping is chosen to be 

piecewise linear for better visualization. 

and with the following property P (see Fig. 3): 

P: 
J contains two disjoint intervals J1 = [Y, ; ' ] ,  and 

J2 = [ Y*', Y* ] such that f2(ji  )i= 1,2 = J 

Remark. By (a), 
y =  1 - y *  

Let us now consider the rectangle R defined by 

R = [ 1 - X ,  1 ] •  

Using (a) (b) (c) and property P, we see that the two horizontal strips in R 
defined by 

R i = [ 1 - X ,  1 ] •  i, i E ( 1 , 2 }  

are transformed by F 2 into two vertical strips: 

F 2 ( R 1 ) = [ 1 - X  2 , 1 - x  2 + x  3] •  

F 2 ( R 2 ) = [ 1 - X + X  2 - X  3 , 1 - X + X  2] •  

where we have used the fact that both horizontal strips and their images 
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Fig. 4. The two horseshoes for F 2. F2(S) has also been represented. 

under F are in C and that (b) together with [O,,gy(x)l =- 2t yields 

g y ( x )  = Xx, y < 1 / 2  - 

gy(x )= l - Xx, y >l 1 / 2 + e  

Using now condition (c), and the fact that horizontal lines in Ri are 
transformed into horizontal lines by F 2, one gets by standard arguments 
the conclusions listed in the theorem. �9 

Remark  1. Under the same circumstances, there exists another 
horseshoe fo r  FZ]F !(R) and the nonwandering sets of the two horseshoes 
are exchanged by F. Both are represented in Fig. 4. 

Remark  2. If condition (c) on g is weakened so that 

I~xgy(x)l < X < 1/2 

the theorem still holds but R is no longer a genuine rectangle; instead, it is 
given by 

F[CR] N[0,1]  •  

Then, condition (b) is no longer needed and can be dropped. 

3.2. Cycles with One Point in the Bad Set 

Our main goal, in this subsection, is to illustrate on a specific example 
how the bifurcation diagram for one-dimensional maps is modified for 
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invertible mappings. Let us first describe a method for constructing models 
which display the main features illustrated by Fig. 2a. 

Step 1: F Outside the Bad Set. One writes S as a disjoint union: 

S =  CR U[O, 1] X U U CL 

with U = ]u m, UM[ and choose functions f and a one-parameter family gy 
such that in C R and C L, F reads 

F(x, y) = ( gy(x), f (y)) 

Remark. fwas defined in Section 3.1 by restricting to [0, 1]\ U t h e f  
of Section 1. Then one gets four points: 

A =(gU, n(O),ff(Um)) 
B=(gu,  o(1),f(um)) 

c = (g.,o(0), f (Um))  

P=(gu~(1),f(um)) 
It is then simpler to impose that f(Um) = f(UM). 

Step 2: The Shape of F([0, l] • U). F([0, l] • U) will be bounded 

by the segments AC, DB and two curves AB and CD. AB is defined by a 
map 

ro :(0) x U ~ S  

CD is defined by a map 

rl  :{1} • U~S 

and in order for F(S) to be U-shaped, CD must lie above the horizontal 

line containing A, B, C, D. Then the injectivity of F imposes that ~'~ be 

above CD. 

Step 3: Getting Formulas for F in [0, 1] • U. One chooses two 
monotone decreasing functions: 

s: [Um,UM]--->[O, 1 ] with S(Um)= 1, S(UM)=O 

t: [0,1]--->[0,1] with t ( O ) = l ,  t (1 )=O 

and one writes, for (x, y) in [0, 11 • U, 

I:l 1 i t (x )  �9 r0( (0} ,  y )  + [ l - t (x ) ]  �9 r , ( ( 1 ) ,  y)  
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Step 4: Checking. It remains to check that all parameters used to 
define g, f F 0, Fl, s, t, fit together so that F is injective, preserves S, is 
continuous, and, if necessary, as smooth as one wants. We shall consider 
the simple case when 

i. conditions (a), (b), (c) of the preceding subsection hold; 
ii. f s, t are affine functions; 

iii. F 0 and F l define parabolas. 
This yields 

l [ Xx(1- 2y) + y + e-1/2 ] 

F : (y) - - )  A_Sn_[(l_2y)/2e]2[A_tql/2_e)_Sx] (2) 

if 1 Y - 1 / 2 1 <  

[ ( ; ( 1 ~ ) )  if y >_- 1 / 2 +  e 

where 

(a) 
(b) 

(c) 

(d) 

(e) 

0 < x <  1 / 2  

3 > 0 ,  e > 0  

2 
t* < 1 _ 2----- ~ 

l + 2 e  
/* > 1 - 2------7 

1 1 1 

(f) A < 1 

(g) A - s > ~ ( 1 / 2  - ~) 

(a) and (b) are necessary for F to be injeetive; (e) and (f) are necessary for 
S to be invariant under F; (d) gives a nontrivial fixed point out of 
[0, 11 x U; (e), using (d), is equivalent to h(f) > Log~-;  and (g) is neces- 
sary for F(S) to be horseshoe-shaped (f0 unimodal). 

Remark. The local behavior of t he f / s  near 1/2 - e and 1/2 + e will 
not play any role for the problems we shall examine in this subsection so 
that everything will remain valid if instead of the F's  we consider smooth 
mappings obtained by small perturbations in thin strips about [0, 1] • 



Simple Models for Bifurcations Creating Horseshoes 465 

{1/2  - E} and [0, 1] • {1/2 + e} ( F  itself is a homeomorphism of S onto 
its image). 

We shall examine parts of the bifurcation diagram for one-parameter 
families F A, all other parameters in (2) being fixed, and make some 
comparisons with known results for unimodal maps of the interval. Some 
kneading theory (3'1~ will be useful, both as a tool in some proofs and to 
make the comparisons possible, so let us recall some facts and fix our 
notations (see, e.g., Ref. 3 or 10 for justification). 

Given a unimodal mapping k of I with critical point e, one associates 
to each x E I  an itinerary: 

J ( x )  = X~X,~ . . . .  X, E { R , L , C )  

as follows: 
If k " ( x )  ~ c for each n > 0 then, for each n > 0, 

X.  = R, k " ( x )  > c 
(*) 

x .  = L, k " ( x )  < c 

If k i n ( x )  = C and k " ( x )  ~ c for each n < m, 

Xm = C and is the last symbol 

(*) applies for each n < m 

To each itinerary, one can associate its value v ( J ( x ) )  as a decimal number 
O, Y l Y 2 . . .  in [0,2/9] as follows: 

if y; is preceded by 0 (respectively, 2) and X i = R, 

then Yi = 2 (respectively, 0) 

i f y  i is preceded by 0 (respectively, 2) and X i = L, 

then Yi = 0 (respectively, 2) 

if X / =  C then yi = 1 

Then 

v ( J ( x ) )  < < x' 

x < v ( J ( x ) )  < v ( J ( x ' ) )  

The itinerary k* = J ( k ( c ) )  is called the kneading sequence of k: if 
h(k)  > Log ~- ,  then 

v (k* )  > 0.22020202 _ 218 
" ' "  990 (3) 

If k is surjective, then v ( k * ) =  0 . 2 2 2 . . .  = 2 /9 ,  but if k ( c ) <  1, one can 
always find a N such that, for any itinerary J beginning by RL" ,  n > N: 

, > ( J )  > ,>(k*) 
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A periodic orbit will be represented by the itinerary of its point with 
greatest coordinate. (It can happen that infinitely many periodic orbits are 
represented by a single symbolic sequence, but this does not affect our 
argument.) The itinerary of a periodic point can be written as the concate- 
nation J "  = J-n ~ = J n  J n  J n  �9 �9 �9 indefinitely, of symbolic sequences J ~  
formed by the n first symbols of J ,  where n is the period of the cycle. 

For k of class C 1, a cycle is said to be superstable if it contains C; 
then, D k  n is zero when evaluated at any of the n points of the cycle. For 
injective mappings of S, superstability will refer to the cases when D F  n has 
its spectrum on the imaginary axis and inside the open unit diSk. 

The cycles of F A we shall consider correspond, on the interval, 
to cycles C n (respectively, C,,,,?) with itinerary R L n C  [respectively, 
RLm(RL)2e+IRC]  when they are superstable and [RLn+1] ~ {respectively 
[RLm(RL)2P+2] ~176 } when k is surjective. 

The correspondence alluded to above is well defined in our case since 
we shall only consider cycles with just one point in the bad set [0, 1] • U 
and thus whose y-dynamics is completely described by a single endomor- 
phism f~; and since these cycles are continuous deformation of cycles one 
gets when 8 = 0 or e = 0. 

Let (k~) be a C l-continuous one-parameter family of C 1 unimodal 
mappings, with k~,~ surjective and k~ not surjective for a < area x. As a 
consequence of Theorem III.l.1 of Ref. 3, there are sequences {an) 
(respectively, (am,p}, p > 0 fixed) converging to ama x, such that Cn is 
superstable for k~, (respectively, C,~,e is superstable for k, ). Furthermore, 
k~m,x admits all cycles C, and Cm,p (more precisely at le'~tst one of each 
type). 

We now remark that A = 1 is the largest value of A for which F A maps 
S into itself; indeed Proposition 1 below and the remark which follows it 
will confirm that A = 1 is the reasonable counterpart of the area x we 
encountered in one-parameter families of one-dimensional maps. We will 
argue that the above one-dimensional results still hold for the Cn's but not 
for the Cm,p's; this exhibits an explicit modification of the bifurcation 
diagram known for one-dimensional maps. 

Before proceeding, let us recall that since H~non mappings are area 
preserving when I b[ = 1, one gets easily modifications of the one- 
dimensional bifurcation diagram when Ibl is large enough. ('`) Using 
Newhouse's results in Refs. 13 and 14, Van Strien has recently proved (~9) 
that modifications also exist when [b[ is small enough. The modifications 
we shall get work as soon as 8 ,  e .  ~ ~ O. Furthermore the approach is 
much simpler and the modifications are explicit. 

Pro0osil ion 1 (easy). A r e a  x = 1 is the lowest value of A such that 
there is a tangent homoclinic point in the invariant manifolds of 0 in S. 
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Remark. This homoclinic tangency thus plays the same role that the 
"outer" heteroclinic tangency for the Hdnon mapping when b > 0, as 
described by Sire6 in Ref. 18. Sim6's analysis would apply to our models 
adapted to be orientation reversing and the situation is as in Proposition 1 
for H6non mappings when b < 0 (orientation preserving case). When b = 0 
both kinds of tangencies occur simultaneously, when the one-dimensional 
mapping is surjective. 

l .emma 2. There exists a sequence ( A n } n ~  N converging to 1 such 
that FA~ admits a superstable cycle RL'C. 

Proof. For A n = 1 -I- 8 ~ n ( l  - -  7~/2) - 1/2/z n+l, one readily verifies 
that the point (1 - ~/2,  1/2/~') belongs to a cycle RL"C and that this cycle 
is superstable. 

Lemma 3. For n large enough, there exists at least one cycle 
[RL,+ l]= when A = 1. More precisely, for such n, one can find a rectangle 
R, below the line y = 1/2, whose n first images are rectangles disjoint from 
R,, below (or partly b e l o w ) y  = 1/2, whose (n + 1) th image is above 
y = 1/2 and such t h a t  F~+Z[R n is a horseshoe. 

Proof. It suffices to define R, by 

R , = [ 1 - ) t ,  1 ] •  1--_2E2/~ ' 1 + 2 c  1 2 / ~ "  , n large enough 

to get a horseshoe for F~' § 2. In the nonwandering set of this horseshoe, one 
can find two fixed points for F~ +2, one to the left of the line x = 1 - X/2, 

a 

Fig. 5. 

$1 / /  
I ,  N 

v b 

/7// 

//// 
/// 

/// 

F o u r  horseshoes  for F~ +2, for e --- 1 /13,  # = 2, ~ = 0.3, ~ = 0.05, a n d  n = 1, 2, 3,4. 

(a) in S; (b) magni f ica t ion .  
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corresponding to the sequence [RLnR] ~176 one to the right, corresponding to 
the sequence [RL n+ 1]o~. We have represented some of these horseshoes in 
Fig. 5. 

Remark.  The case n = 0 corresponds to the horseshoe for F 2 exam- 
ined in the previous subsection, so that when 

/~2-- /~+ 1 
e >  

2( 2 + + 1) 

the horseshoe for F31R, exists and one can take n >i 0 in Lemma 3. If e is 
too small, all horseshoes still exist but the formula for R n must be modified 
for small n's. 

Lemma 4. For m large enough, all the cycles [RLm(RL)2p+2] ~176 have 
exactly one point in [0, 1] x U for any F A such that they exist. The same 
results holds for the cycles RLm(RL)2e+1RC. 

Proof. For all points of the cycle, except the one with largest 
y-coordinate, one verifies that the value of the itinerary is below 218/990 

[see (3)] and thus, since h ( f )  > Logv~-, are not in [0, 1] X FA(U ). Now, f 
being fixed with v ( k * ) <  0.222 . . . .  2 /9 ,  it suffices that m be large 
enough in order for the upper point of the cycle to satisfy v ( J )  > v(k*)  
and thus to be in [0, 1] x FA(U ) so that its preimage is in [0, 1] x U. 

Now let us remark that the bifurcation diagram of F A is the same as 
for one-dimensi0nal mappings when 8 = 0 or e = 0. The nature of some 
changes which occur when ~ > 0 and ( > 0 is described in the following 
theorem. 

Theorem. For any family { F A } with 8 > 0, e > 0, h > 0, A varying 
from some value A 0 < 1 to Area x = l, there is a sequence {An}(. l~rg~ ~.o.sh) 
converging to 1 such that FA. admits a superstable cycle RL'C,  and for 
each such n, there exists at least one cycle [RLn+l] ~176 when A = 1. On the 
contrary, if m is large enough, there is no A < 1 such that a cycle 
RL " ( RL  ) 2e + 1R C is superstable for F A and no cycle [ RL  m ( RL  )2p + 2] ~176 exists 
f o r a F  A w i t h A  <1 .  

Proof. By Lemmas 2 and 3, it only remains to prove the negative 
parts of the theorem. Let us then consider the case of the cycles 
[RLm(RL)2p+2] ~ since the same arguments apply to the R L m ( R L )  2p+l 
RC's. Suppose that a cycle [RLm(RL)2p+2] ~ exists for some F A . A simple 
computation shows that the point with smallest y-coordinate in the cycle is 
the one with itinerary [Lm(RL)2e+2R] ~176 Indeed, the y-coordinate of this 
point must be smaller than 1/2/* (~-1) since its m -  1 first iterates are 
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0 -  

Fig. 6. Representation of F13(S): the points [XRLm(RL)PR] ~176 [RL"(RL)eRX] ~ and 
[L"(RL)eRXR] ~ of Crop must lie in the shaded areas @,  Q ,  and @ respectively, but on 
the other hand, [Lm(RL')PR • R] ~176 should be in the black area for m large enough (X stands 
for L or R). 

below 1/2 and thus have the y-coordinate multiplied by/~ under iteration 
of F A . 

On the other hand, the preimage [LRLm(RL)2P+IR] ~ o f  the upper 
point of the cycle must lie in the right vertical strip of F A (S) (see Fig. 2a): 
this is due to the fact that its own preimage is [RLRLm(RL)2P+1] ~176 thus 
above [0, 1] X U by Lemma 4 and by the fact that the itinerary begins by 
R. As a consequence, they-coordinate of the point [RLm(RL)2e+2] ~176 must 
be smaller than A - 8/2:  its preimage being in the right half of S, this 
point must have y-coordinate smaller than the upper point of the image 
F A {1/2} • {0, 1} which culminates at A - 8 / 2 .  Since, by Lemma 4, the 
point [RLm(RL)2p+2] ~ is in the image FA([0,1]• U) of the bad set, 
conditions (d) and (g) in the formula for F A imply that it is also above 
1/2 + E, and the y-coordinate of its image [Lm (R L)  2p +2R ]oo is thus greater 
than/~(1 - A + 8/2). 

Since this same point [Lm(RL)2P+2R] ~~ was shown to have y-  
coordinate smaller than 1/2/~ m at the beginning of the argument, it only 
remains to remark that, for rn large enough, 1/21~ m is smaller than 
/L(1 - A + 6/2)  to get a contradiction. [] 

Remark. For maps adapted from the FA's to the sense-reversing 
case, the right vertical strip of F A (S) is mapped above the left vertical strip. 
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As a consequence, the same kind of arguments as in the proof of the 
present theorem show that the cycles of type [RLm(RL)2P+2] ~176 appear  
before the cycles [RLm] ~, when A is increased to the maximal value 
corresponding to the heteroclinic tangency alluded to in the remark follow- 
ing Proposition 1. 

4. EXPLICIT EXAMPLES OF WILD HYPERBOLIC SETS AND 
INFINITELY MANY SINKS 

Let us first recall a definition due to Newhouse. (14) 

Definition. Let A be a hyperbolic basic set for a C r diffeomorphism 
F :  M---> M with r >/2 fixed and let U be a compact  neighborhood of A 
with ['In f ' (U)= A. Let us denote by A(G) the hyperbolic set N,  G~(U) 
for any GCr-near F. A nondegenerate (parabolic) tangency Z of W'(X, F) 
and W'(y,F) for x,y  ~ A will be called a nondegenerate homoclinic 
tangency for A. Then, A is a wild hyperbolic set if each G Cr-near F has the 
property that A(G) has a nondegenerate homoclinic tangency. 

That  such sets will occur frequently in the process of formation of a 
horseshoe is proved by the following theorem. 

Theorem (Newhouse(~4)). Let {Ft}tE[0,1 ] be a C ~ curve of C r dif- 
feomorphisms of M, r >i 3 and for each t ~ [0, 1], let P~ be a p-periodic 
point for F t with det TpFt0e ~: 1 for some t o ~]0, 1[ such that W'(Pto ) and 
Ws(Pto ) have a parabolic tangency at some point X. Let U be a neighbor- 
hood of X and suppose that in U, W"(Pt) N Ws(Pt) = 0 for t < to, and 
wU(Pt) has two transverse intersections with Ws(Pt) for t > t 0. Then, for 
each e > 0 there is a t~ with I t~ - to[ < e such that F,, has a wild hyperbolic 
set near the orbit of X. 

Robinson (16) recently gave an explicit proof that for some t near t 0, F t 
will have infinitely many  sinks (this result was implicit in Newhouse's  
writings, but he had not stated it explicitly). 

In this section, our aim is to give explicit examples of the occurrence of 
both phenomena.  The construction of an example with infinitely many 
sinks will involve only elementary computations but the construction of the 
wild hyperbolic set will be done using a lemma on the intersection of 
Cantor sets in R, which also plays a central role in the proof of the above 
theorem. 

Definition. (12) Let K be a Cantor set in R and K 0 the smallest closed 
interval containing K. We may write K o - K = [..Ji~o Ui, where U,. C3 Uj 4 :0  
if i =/=j and each U,. is a bounded open interval. Let U_ 2 and U_ l be the 
unbounded components of N - K. The U,.'s, i I> - 2  are called the K-gaps. 
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For i >~ 1, set K,. = K 0 - U0<j</ - i  uj: note that K =  ni>~0K,.. {K,.)~>0 is 
called a defining sequence for K. For i/> 0, if K/* is the component of K,. 
containing U/, K/*\ U/is the union of two disjoint intervals C / a n d  Ci r. Now 
set 

, r ( {K i} )=in f (min (  lCil lCir)} i>O ~ \ IU,. ' lUi 

where lI is the length of the interval I. Then 

~'(K) = sup{~-({K }) I (K,. } is a defining sequence for K} 

is called the thickness of K. 
We can now formulate the lemma alluded to above: 

L e m m a  (12,~4~ Let K and K' be Cantor sets in R with K in no K'-gap 
closure and K '  in no K-gap closure. If ~-(K) �9 ~-(K') > 1, then K N K '  =/= Q. 

The way to use the lemma is to find a hyperbolic basic set A and a 
piece of straight line L such that WU(A) N L and W'(A) N L are Cantor 
sets as above. Then general arguments as given in Ref. 14 show that A is a 
wild hyperbolic set. 

4.1. An Explicit Example of Wild Hyperbolic Set 

We shall use again the remark that F as defined in Section 3.2 yields 
smooth mappings by appropriate small perturbations in thin strips about 
[0, 1] x { 21 - e) and [0, 1] • { �89 + c}. To simplify the notation, we will only 
consider one-parameter families F~ as defined in the previous section since 
apart from smoothness, they satisfy all the conditions of Newhouse's 
theorem and do have wild hyperbolic sets for some values of A. The wild 
hyperbolic sets one gets this way can, however, be very small and it is 
difficult to control them and to prove that one exists for a fixed value of the 
parameters. Here, we shall adjust the parameters in order to get the 
horseshoe for F 2 as an explicit wild hyperbolic set. The subscript A will be 
omitted hereafter since we shall have to choose correctly all parameters. 
Our first task is to investigate the transverse structure of WS(~) and WU(~), 
where f] is the nonwandering set of the horseshoe described in Section 3.1. 

Remark. While ~2 U F(~) is a basic hyperbolic set for F, ~2 is not. 
Proving that ~2 is a wild hyperbolic set for F 2 will, however, be enough to 
get ~2 U F(~2) as a wild hyperbolic set for F. 

(a) WS(~). When h( f )>  Log,f2 the vertical structure of ~2 is com- 
pletely described by f-2 (Section 3.1). To ensure the entropy condition, we 
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take 

2 +/~(1 +/ , ) ( /*  - 2) 

in the definition of F. 
Using the notations and results of Section 3.1, let us denote by 

J3 = J \ (J l  I j J2) the set of points in J whose image under f2 is not in J:  
then, the projection on t h e y  axis of a is obtained by deleting from J, J3 
and all its preimages by f2_This  defines a middle-a Cantor set which is 
constructed like the genuine middle-third, except that the ratio deleted at 
each step is ~ instead of one third. For such a Cantor set, one easily gets 
the thickness: 

_ 1 - a 

Here a is the length of J3 divided by the length of J,  i.e., 

/J3 2 
0 s  J ] - -  - - .  

lJ i.t2 

Now, the intersection of W' (a )  with any vertical line in S contains a 
middle-a Cantor set, say K s which runs from y =j7 to y = y *  on the 
vertical line. 

(b) WU(a). Recall that we chose the rectangle R = [1 - X, 1] • J as 
the support for the horseshoe of F 2. Now F2(R) determines in R two 
vertical strips, respectively, between 1 - X + X 2 - X 3 and 1 - X + X 2 and 
between 1 - X 2 and 1 - 2t 2 + h 3. By iterating this process one determines as 
usual the transverse Cantor set structure of W~(fl); more precisely, we are 
dealing with the part of WU(a) in R whose inverse image under F 2 is also 
in R, and we obtain that this set can be written as 

K ~ X J  

where Kg is a middle-/3 Cantor set with extremities 1/(1 + X) and (1 + X - 
h2) / ( l  + X) and with 

/3= 1 -27 t  2 

so that 

~k 2 
�9 ( K r  >. - -  

1 - 2X 2 

The image of K~ • J under F cuts the vertical line x --- 1/2, on a new 
middle-fl Cantor set K~ with the same/3, by the formula for F which gives 
an affine mapping from the line y - -  1 /2  to the line x = 1/2. K~ runs on 
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x = 1 /2  between 

and  

Yrnin, l = A - 8 ( l + l + ) ~ ) k - ) ~ 2 )  

= A - 6 (  1 Yrnax,1 

For  n > 1 small enough,  the image Fn(K~) is on the vertical line: 

x.  = x ~  - x / 2 )  

It  is still a middle-fl  set K~+1 which runs f rom 

Ymin,n = /~n-l(  1 -- Ymax, l) 

to 

Ym . . . .  ----- ]zn- l (  1 -- Ymin, l) 

(c) An Explicit Example of WiM Hyperbolic Set. It  remains only to 
choose A, 6, e, ~, /~, and  n so that  K s and  K u satisfy the conditions of 
Newhouse ' s  lemma. As an example, one can take/~ = 1.5, with e = 1 /100  
which gives 

h(f) > Logv~- 

and 

' r (K  "~ ) = 4 

Then, )~ = 0.49 ensures z(KU)'--~0.4619, so that ~-(KS) �9 ~-(K~) > 1. Choos-  
ing n = 3, it remains to fix A and 6 using 

8 1 A = I +  - -  
1 + X t~2~l + /z) 

which ensures that  

Ymin,3 = 17 

This gives the remaining condit ion of Newhouse ' s  lemma. Using condit ions 
( f )  and (g)  in the definition of F one can take as an example 

8=0.1 

A = 1 + 6 1 - -0 .8893 
1 + ~ /z2(1 + / ~ )  

Despite the fact that  the parameters  are explicitly chosen, this example 
seems less "ad  hoc"  than Newhouse ' s  original one (12) since it appears on 

and  
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�9 , ...... , ,, iilL ,II ii, ,,. ..,..,., . 

0 1 
Fig. 7. Numerical simulation of F with parameters as defined in the main text to get a wild 

hyperbolic set. 

the way to a horseshoe. It also allows numerical simulations, as displayed in 
Fig. 7. Unfortunately, the main information contained in this figure seems 
to be the confirmation that knowing explicitly a wild hyperbolic set does 
not help very much to get a global understanding of the mapping. 

4.2. Examples of Mappings with Infinitely Many Sinks 

The main idea leading to the examples below is to choose maps 
constructed as explained at the beginning of Section 3.2, in such a way that 
all periodic cycles corresponding to the kneading sequences R L n C ' s ,  for n 
large enough, are simultaneously stable. The way these sinks will be 
organized in the plane will be typical vis-~t-vis Newhouse's theory (see Ref. 
13, Proposition 3): they will converge to the closure of the set WU(0)N 
WS(0). However, because of the simple structure of these periodic orbits, 
the fixed point 0 will not be dissipative, i.e., the product of the eigenvalues 
of the linearized mapping at 0 will be equal to 1. It is our opinion that this 
should not be dramatic for the numerical observability of the phenomenon. 

The examples are constructed as follows. 

Case One. One uses F 1, i.e., F as defined in Section 3.2 with A = 1, 
then one writes the conditions of coexistence of all R L n C ' s .  Using the proof 
of Lemma 2, this reads 

n >/ I ~2~/~n+~hn(1 - h /2 )  ~ 1 
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Fig. 8. Numerical simulations of mappings with infinitely many sinks: (a) and (b) correspond 
to cases 1 and 2 of the main text. 

Thus, one must set 

and 

/~?~= 1 

6 -  1 

Such an example has been illustrated in Fig. 8a. Here, e = 0.2 and/~ = 2.01 
so that )~ m 0.4975 and 8 ~ 0.3311. In this case, one can visualize all sinks 
R L ' C  up to n = 18 with a computer  HP.9845-B. 

For greater n's, starting from the best numerical approximation of a 
point of the cycles (our computer uses 12 digits), numerical errors eventu- 
ally cause divergences: for many  examples of the same kind, one converges 
to 0 or one of the sinks of low period when starting near a sink of high 
period. 

C a s e  Two. By choosing correctly a f w i t h  nonconstant slope in Step 
1 of the construction of F in Section 3.2, we can avoid the cycles 
corresponding to the RL=C's with n small while keeping infinitely many  
sinks corresponding to the RL=C's with n large enough. The effect in a 
numerical simulation is that, instead of converging to a known stable cycle 
as in the preceding case, one can converge to some uncontrolled apparently 
strange attractor as illustrated in Fig. 8b with the simplest case of a 
piecewise affine ]~ 
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